智慧工地 数字化施工 铁路基建迎接智能时代
发布时间:2020-07-22 15:57
随着建筑业的复杂度和体量不断增加,施工现场管理内容越来越多,管理技术难度和要求也日益提高,传统施工现场管理模式已很难适应现代化施工企业的发展要求。
施工工地数字化建造作为企业信息化建设的“细胞”,在数据的智能化采集、为管理流程赋能、辅助科学决策等方面,正变得越来越重要,而信息化的普及与应用促使具有智能化特点的智慧工地应运而生。
智慧工地是“物联网+”背景下智慧工程项目施工建设的重点,同时也是我国建筑行业现代化发展过程中不可缺少的一部分。通过数字化、物联网、BIM等新技术应用,有效收集施工过程数据,加强项目后台管控,形成整套智慧工地建设解决方案,最终实现工程项目全面信息化管理。
目前,智慧工地建设如火如荼,但现实情况是工程建设未达到智慧阶段,更多的是通过数字化手段实现信息化管理,当信息化管理所存储的有效数据达到一定量级,再加上成功的算法,形成了可智能判断、决策的“工程大脑”,那么智慧工地的时代将真正来临,而更高阶段的建设智能时代,也正悄然向我们走来。
丽香铁路路基数字化工地
新建丽香铁路为单线电气化Ⅰ级客货共线铁路,起于丽江,跨金沙江,止于香格里拉。丽香铁路路基BIM试点作为原中国铁路总公司试点之一,除验证各项铁路BIM标准和BIM文件编制办法外,主要进行路基数字化工地研究。项目主要研究工地数字化场地建设、分层填筑模型应用、连续压实工艺分析、路堑边坡坡率控制和复合地基施工中模型的深化应用等,取得了丰富的数字化工地分析资料。
数字化场地建设
信息传递是数字化场地的关键。施工中,机械产生大量数据,这些数据对工程质量、安全、进度起决定性作用。通过在现场设置无线网络基站,配合多种通信技术,实现对施工场地的全覆盖。主要通信技术包括:
(1)使用电台网络将基站定位差分信号传输至现场施工机械及数字化测量系统;
(2)使用移动GSM将生产过程数据传输至远程服务器;
(3)使用Wi-Fi将生产机械互联,实现BIM及生产报表的现场应用;
(3)使用光纤专线接入,远程实时监控现场情况。
分层填筑模型应用
分层填筑模型与分层开发模型是在设计BIM模型的基础上,根据现场情况建立。分层填筑模型用于控制填筑质量和存储施工过程数据。基于模型,附加机械走位及相关资料,实时显示走位轨迹及填筑时间,真实反映实际施工分层情况,数据存档便于后期(沉降评估等)查询。
施工过程中,要达到最佳密实度,分层厚度的确定至关重要。分层厚度随填料、施工环境和施工工法而变,模型分层厚度原则上通过现场施工前的填筑试验段确定。施工规程中,填筑参考厚度≤0.3m,实际施工中误差不可避免,填筑实际分层厚度与BIM模型分层厚度必存在差异,要解决这个问题,只有根据实际施工过程动态调整施工分层模型,但这会导致出现各分层厚度不均匀的情况。同时,这也不能解决实际施工中的分层面凹凸不平的现象,机械走位轨迹曲线拟合曲面可真实反映这一情况。
连续压实工艺分析
传统路基压实质量检测主要采用“点式”抽样检测,存在无法实现过程控制、难以界定合格区域与不合格范围、不能反映整体区域特性、检测点不一定具有代表性及无法实现信息化和数字化等缺点,连续压实检测与控制技术是基于上述不足而形成的一种新的压实质量检测与控制技术。
连续压实检测与控制技术通过测量振动压路机振动轮振动信号,综合利用动力学分析、信号处理和信息融合技术,全面考虑各种影响因素,分析计算能全面反映路基压实质量的振动压实值,集成嵌入式技术、网络技术及北斗定位技术,形成连续压实监测设备。连续压实过程中,可通过车载连续监测设备LCD大屏幕实时了解路基压实质量情况,实现路基压实程度控制、压实均匀性控制、压实稳定性控制及压实工艺参数的监控,还可优化施工过程,避免造成过压和欠压。
施工方式及特点
数字化施工
(1)无需现场测量人员,无需领工员现场指挥;
(2)无需放样打桩,不存在桩被破坏的问题,可以保证整个施工过程中施工质量的稳定;
(3)降低机手工作强度,如眼睛无需实时跟踪桩、线及平整表面;
(4)平地机无需操作员控制铲刀,可极大提高效率。
传统施工
(1)领工员管理工作面较多,无法专注在一个工作面工作;
(2)推土机、平地机对机手的经验要求较高;
(3)粗平过程中对填料分区边界会破坏参考桩;
(4)精平时保存完整的参考桩已不多,将影响机手作业,或需再次打桩;
(5)打桩材料(如钢筋等)是消耗品,整平完成后大部分不能重复使用。
数字化施工与传统施工特点比较
数字化施工分层碾压连续压实结果
路堑边坡坡率控制
通过现场无线网络、施工机械上的空间定位系统,实时反馈开挖过程中的坡面几何变化,并不断与现场校验的施工模型进行比较,动态引导机械操作人员的下一步操作,消除传统施工中边施工边放样测量的交叉过程,避免边坡超挖或欠挖。
数字化施工分阶梯施工设计
薄弱区域数字化显示结果
项目关键技术
收集安装在挖斗上的空间定位传感设备,分析挖斗的空间运行轨迹,再实时拟合成坡面。每个挖斗的空间定位采用多个数据传感器精确定位。与传统施工工艺比较,机械的走位应强调路堑挖方采用横向台阶分层开挖,深挖路堑采用“横向分层、纵向分段,阶梯掘进”的方式施工;合理安排运土通道与掘进工作面的位置及施工次序,做到运土、排水、挖掘、防护互不干扰,确保开挖顺利进行
数字化施工流程与传统施工流程对比
复合地基施工模型为预制方桩及水泥搅拌桩,模型数据由处理范围数据和桩位数据组成。处理范围数据:地基处理范围体的上、下顶面及侧面坐标数据。桩位数据:具体各桩位的桩顶三维坐标和桩底高程坐标,可输出为文本格式。
复合地基施工模型
试点项目研究从BIM模型中将桩基设计模型直接导入施工机械的方法,用以实现“设计指导施工”的无缝对接;研究桩基施工过程的全面记录、控制及可视化追溯的应用;研究桩基关键质量参数的量化控制,包括成桩位置、成桩深度、成桩时间、桩倾斜度、留振时间、每次拔管高度、反插次数、反插深度、电机电流值、持力层控制、填料量、充盈系数、混凝土喷射流量及速度等。
京张高铁八达岭长城站隧道智能建造
京张高铁八达岭长城站“三纵三横布置”层次多、洞室数量大、交叉节点密集,是目前国内最复杂的暗挖洞群车站。为响应铁路总公司提出的“精品工程、智能京张”总体目标,八达岭长城站搭建了深埋超大跨地下车站智能建造体系,在大数据、人工智能技术与智能工程机械装备结合的基础上,研发了隧道围岩智能化超前地质预报技术、隧道三维集成协同智能设计、隧道开挖及支护智能化施工系统、隧道结构安全智能监测系统,实现了隧道全生命周期的智能化建造。
隧道大型机械化施工是国际地下工程发展的方向,也是铁路建设保证安全、质量,控制运营安全风险的有效手段。八达岭长城站采用大型机械智能化施工,研发智能化开挖及支护机械设备,包括隧道智能模板台车、衬砌智能养护台车等,开挖迅速、支护及时,从而充分发挥围岩的自承能力;同时,车站基于BIM模型,通过人员-车辆-设备的实时定位系统,建立高效的运输管理体系,实现复杂地下车站人流-物流的高效协调和智能施工组织。
隧道智能建造技术在京张高铁的成功应用,提高了我国隧道安全建设的技术水平,具有重要的现实意义。
智能模板台车
八达岭长城站两端设置大跨过渡段,大跨过渡段总长度336 m,最大断面(宽32. 7 m)通过5次渐变至最小断面(宽19. 0 m),普通的衬砌台车通过加宽、加高门架横梁和增加顶模板实现台车的断面加大 ,并不适用于八达岭长城站大跨过渡段,因此研发了台车骨架立柱设计为横向可移动结构的智能模板台车。
智能模板台车横断面结构示意(单位:mm)
智能模板台车的设计选择增加门架立柱、加宽门架横梁、补充支撑结构、增加顶模板共同作用的方式实现台车断面的调节。
台车骨架立柱设计为横向可移动结构,通过横移油缸使其间距实现变化,模板设计为多段式,通过各自模板对应的调节机构调整至理论设计轮廓线,变断面时增加或减少预先设计的拱顶调节模,以完成变断面隧道可调式衬砌台车设计。
智能养护台车
在国内铁路隧道施工中,衬砌施工后一般采用自然养护,个别项目采用简单的喷水养护,这些养护方法受外界环境以及人为因素影响较大,难以保证衬砌的养护质量 。研究团队研发出一种用于隧道衬砌养护的专用机械设备,属于国内首创。隧道衬砌智能养护台车设备包含2组台车,施工时紧跟衬砌浇筑模板台车,前端第一台具备加升温、保温、保湿功能,第二台具备保温、加湿功能。
智能养护台车
智能养护台车主要由门架形式结构、雾化系统、电加热系统、气囊密封系统、智能温湿度控制系统等组成。衬砌台车脱模行走后,智能养护台车同轨行走就位,密封气囊隔绝封闭,根据实时测量的混凝土芯部温度及变化趋势设定好加热系统的温度及时间,保证对衬砌混凝土芯部与外表的温差进行弥补;同时,根据养护传感器监控养护湿度是否超设定值,加湿系统对混凝土表面进行实时补湿。
智能养护台车弥补了以往养护台车的不足,可以进行养护温度曲线设定,自动控制养护温度,衬砌养护台车自动化程度高,减少人工操作的难度,提高了二衬养护技术的机械化和自动化,提高了衬砌混凝土的施工质量。隧道衬砌智能养护台车的推广应用,将终结长期以来国内隧道衬砌养护不规范的历史,大大提高隧道衬砌混凝土的质量。
人机定位管理系统
隧道施工人员及设备位置监测安全管理系统(简称人机定位管理系统) 是在第二代无线射频(RFID)识别技术平台基础上,结合先进的通信、计算机及网络技术成功研发的综合管理平台,采用了目前国际上先进的0. 18 μm微波芯片技术。人车定位系统集隧道施工人员考勤、区域定位、安全预警、灾后急救、车辆管理和交通疏解、日常管理等功能于一体,是国内技术领先、运行稳定、设计专业化的隧道施工、监测系统。
智能化定位和施工组织管理平台
人车定位管理系统使管理人员能够随时掌握施工现场人员、设备的分布状况和每个人员和设备的运动轨迹,便于进行更加合理的调度管理;随时获取各种施工车辆位置和运行情况,动态进行交通运输管理和指挥,减少堵车、保障车辆运输安全。当事故发生时,救援人员也可根据隧道施工人员及设备位置监测安全管理系统所提供的数据、图形,迅速了解有关人员的位置情况,及时采取相应的救援措施,提高应急救援工作的效率。
相关下载
BICES 2023陕西交通市政系统专业用户座谈会在西安召开
2023-07-18
BICES 2023河南交通市政系统专业用户座谈会在郑州召开
2023-07-17
逐梦非洲,携手同行!山河智能亮相第三届中非经贸博览会
2023-06-30

点击排行